pyvene.models.backpack_gpt2.modelings_backpack_gpt2.BackpackGPT2PreTrainedModel#
- class BackpackGPT2PreTrainedModel(*inputs, **kwargs)[source]#
Bases:
GPT2PreTrainedModelAn abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
Methods
__init__(*inputs, **kwargs)Args:
active_adapter()active_adapters()If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft
add_adapter(adapter_config[, adapter_name])If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft
add_memory_hooks()Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.
add_model_tags(tags)Add custom tags into the model that gets pushed to the Hugging Face Hub.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
can_generate()Returns whether this model can generate sequences with .generate() from the GenerationMixin.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
create_extended_attention_mask_for_decoder(...)cuda([device])Move all model parameters and buffers to the GPU.
delete_adapter(adapter_names)Delete an adapter's LoRA layers from the underlying model.
dequantize()Potentially dequantize the model in case it has been quantized by a quantization method that support dequantization.
disable_adapters()If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft
disable_input_require_grads()Removes the _require_grads_hook.
double()Casts all floating point parameters and buffers to
doubledatatype.enable_adapters()If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft
enable_input_require_grads()Enables the gradients for the input embeddings.
estimate_tokens(input_dict)Helper function to estimate the total number of tokens from the model inputs.
eval()Set the module in evaluation mode.
extra_repr()Return the extra representation of the module.
float(*args)Casts all floating point parameters and buffers to
floatdatatype.floating_point_ops(input_dict[, ...])Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a batch with this transformer model.
forward(*input)Define the computation performed at every call.
from_pretrained(...[, config, cache_dir, ...])Instantiate a pretrained pytorch model from a pre-trained model configuration.
get_adapter_state_dict([adapter_name, ...])If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_compiled_call(compile_config)Return a torch.compile'd version of self.__call__.
get_correct_attn_implementation(...[, ...])get_decoder()Best-effort lookup of the decoder module.
get_extended_attention_mask(attention_mask, ...)Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
get_extra_state()Return any extra state to include in the module's state_dict.
get_head_mask(head_mask, num_hidden_layers)Prepare the head mask if needed.
get_init_context(is_quantized, ...)get_input_embeddings()Returns the model's input embeddings.
get_memory_footprint([return_buffers])Get the memory footprint of a model.
get_output_embeddings()get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_parameter_or_buffer(target)Return the parameter or buffer given by target if it exists, otherwise throw an error.
get_position_embeddings()get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.gradient_checkpointing_disable()Deactivates gradient checkpointing for the current model.
gradient_checkpointing_enable([...])Activates gradient checkpointing for the current model.
half(*args)Casts all floating point parameters and buffers to
halfdatatype.init_weights()If needed prunes and maybe initializes weights.
initialize_weights()This is equivalent to calling self.apply(self._initialize_weights), but correctly handles composite models.
invert_attention_mask(encoder_attention_mask)Invert an attention mask (e.g., switches 0.
ipu([device])Move all model parameters and buffers to the IPU.
is_backend_compatible()load_adapter([peft_model_id, adapter_name, ...])Load adapter weights from file or remote Hub folder.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.load_tf_weights(config, gpt2_checkpoint_path)Load tf checkpoints in a pytorch model
modules()Return an iterator over all modules in the network.
mtia([device])Move all model parameters and buffers to the MTIA.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
num_parameters([only_trainable, ...])Get number of (optionally, trainable or non-embeddings) parameters in the module.
parameters([recurse])Return an iterator over module parameters.
post_init()A method executed at the end of each Transformer model initialization, to execute code that needs the model's modules properly initialized (such as weight initialization).
prune_heads(heads_to_prune)Prunes heads of the base model.
push_to_hub(repo_id[, use_temp_dir, ...])Upload the model file to the 🤗 Model Hub.
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_for_auto_class([auto_class])Register this class with a given auto class.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post-hook to be run after module's
load_state_dict()is called.register_load_state_dict_pre_hook(hook)Register a pre-hook to be run before module's
load_state_dict()is called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_post_hook(hook)Register a post-hook for the
state_dict()method.register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
reset_memory_hooks_state()Reset the mem_rss_diff attribute of each module (see [~modeling_utils.ModuleUtilsMixin.add_memory_hooks]).
resize_position_embeddings(...)resize_token_embeddings([new_num_tokens, ...])Resizes input token embeddings matrix of the model if new_num_tokens != config.vocab_size.
retrieve_modules_from_names(names[, ...])reverse_bettertransformer()Reverts the transformation from [~PreTrainedModel.to_bettertransformer] so that the original modeling is used, for example in order to save the model.
save_pretrained(save_directory[, ...])Save a model and its configuration file to a directory, so that it can be re-loaded using the [~PreTrainedModel.from_pretrained] class method.
set_adapter(adapter_name)If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT official documentation: https://huggingface.co/docs/peft
set_attn_implementation(attn_implementation)Set the requested attn_implementation for this model.
set_decoder(decoder)Symmetric setter.
set_extra_state(state)Set extra state contained in the loaded state_dict.
set_input_embeddings(value)Fallback setter that handles ~70 % of models in the code‑base.
set_output_embeddings(new_embeddings)Sets the model's output embedding, defaulting to setting new_embeddings to lm_head.
set_submodule(target, module[, strict])Set the submodule given by
targetif it exists, otherwise throw an error.share_memory()See
torch.Tensor.share_memory_().state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
tie_embeddings_and_encoder_decoder()If set in the config, tie the weights between the input embeddings and the output embeddings, and the encoder and decoder.
tie_weights()Recursively (for all submodels) tie all the weights of the model.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_bettertransformer()Converts the model to use [PyTorch's native attention implementation](https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html), integrated to Transformers through [Optimum library](https://huggingface.co/docs/optimum/bettertransformer/overview).
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.warn_if_padding_and_no_attention_mask(...)Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationbase_modeltorch.nn.Module: The main body of the model.
base_model_prefixcall_super_initcan_record_outputsMaps output names (e.g., "attentions", "hidden_states")
devicetorch.device: The device on which the module is (assuming that all the module parameters are on the same device).
dtypetorch.dtype: The dtype of the module (assuming that all the module parameters have the same dtype).
dummy_inputsdict[str, torch.Tensor]: Dummy inputs to do a forward pass in the network.
dump_patchesframework- str:
Identifies that this is a PyTorch model.
is_gradient_checkpointingWhether gradient checkpointing is activated for this model or not.
is_parallelizableloss_functionmain_input_namemodel_tagspp_plansupports_gradient_checkpointingsupports_pp_plansupports_tp_planReturns whether the model has a tensor parallelism plan.
tp_planThe full tp plan for the model's modules
tp_sizeReturns the model's tensor parallelism degree.
configtraining- config_class#
alias of
BackpackGPT2Config