pyvene.models.mlp.modelings_mlp.MLPModelOutput#
- class MLPModelOutput(last_hidden_state: torch.FloatTensor = None, hidden_states: Tuple[torch.FloatTensor] | None = None)[source]#
Bases:
ModelOutput
- __init__(last_hidden_state: FloatTensor | None = None, hidden_states: Tuple[FloatTensor] | None = None) None #
Methods
__init__
([last_hidden_state, hidden_states])clear
()copy
()fromkeys
([value])Create a new ordered dictionary with keys from iterable and values set to value.
get
(key[, default])Return the value for key if key is in the dictionary, else default.
items
()keys
()move_to_end
(key[, last])Move an existing element to the end (or beginning if last is false).
pop
(key[,default])If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem
([last])Remove and return a (key, value) pair from the dictionary.
setdefault
(*args, **kwargs)Insert key with a value of default if key is not in the dictionary.
to_tuple
()Convert self to a tuple containing all the attributes/keys that are not None.
update
([E, ]**F)If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values
()Attributes
hidden_states
last_hidden_state